In Span Hinge Replacement and Seismic Retroffit of the Flamingo Viaduct

Nathan Johnson, Ph.D., PE

Sami Megally, Ph.D., PE

Presentation Outline

- Nevada Background
 Flamingo Viaduct
 Project History
 Structural Assessment
 Seismic Strategy
 Design Challenges
 - Construction

Nevada Seismicity??

	Mag >= 7.0	Mag >= 6.0	Mag >= 5.0	Mag >= 3.5
1st	Alaska	Alaska	Alaska	Alaska
	59	370	2050	14914
2nd	California	California	California	California
	16	114	675	10965
3rd	Nevada	Hawaii	Nevada	Hawaii
	4	29	159	2247
4th	Hawaii	Nevada	Hawaii	Nevada
	4	21	80	1586
5th	Missouri	Montana	Washington	Washington
	2	6	41	898
6th	Arkansas	Washington	Montana	Idaho
	2	5	25	613
7th	Washington	Wyoming	Wyoming	Wyoming
	1	5	22	392
8th	Montana	Idaho	Idaho	Montana
	1	4	18	321
9th	South Carolina	Oregon	Utah	Utah
	1	3	15	193
10th		Arkansas	Oregon	Oregon
		3	14	148

At least 1 event in 30 years 0 events in 30 years

USGS

UNR Seismology

Retrofit

State adopted seismic prioritization

- Importance and vulnerability
- Life Safety or better
- □ 1971 San Fernando→
 - 1986 Caltrans Phase 1 (completed in 2000)
- □ 1989 Loma Prieta→
 - Caltrans increased research
 - NDOT begins prioritization in early 1990's
- 1994 Northridge
 - Caltrans Phase 2, Caltrans toll, CA Local

In-Span Hinge Failures

1971 San Fernando

1994 Northridge

Flamingo Viaduct

- Las Vegas, NV, I-515 over Flamingo
- Owner: Nevada DOT
- Constructed in 1982
- 10-span continuous PT box girder
- Twin 72ft wide 1400ft structures with 2 ISH

Scope: Repair hinges, seismic retrofit/rehab \$3.5M Retrofit/Rehab (small cost difficult task)

Observed Issues

Excessive hinge movement (18" seat)

- Designed for 2in, measured 8-10 in
- Restrainers failed
- Hinge seats
- Columns hinged
- Cap beam T & V

In-Span Hinge

Bridge Rail Separation

Column Plastic Hinging

Outrigger T/V Cracking

Timeline

- 1985 inspection reports noted excessive ISH movement
- 1992 expansion joints reconstructed
- 2003 Initial rehabilitation study (PB)
- 2007 Second Rehabilitation study (PBSJ)
- 2010 Retrofit/Rehabilitation Type Selection and Final Design
- □ (9 year project)

1992 Expansion Joint Reconstruction

2007 Study

	Case I	Case 2	Case 3	Average Field
	Calculated	Calculated	Calculated	Measured
Location	Opening (in)	Opening (in)	Opening (in)	Opening (in)
NB Hinge 1	7.63	8.08	8.32	8.19
NB Hinge 2	7.17	7.58	7.8	8.44
SB Hinge 1	7.86	8.33	8.59	8.19
SB Hinge 2	6.99	7.38	7.58	8.13
Case 1 - 3in initi				
Case 2 - 3in initi				
Case 3 - 3in initi				

- Original design did not account for creep/shrinkage
- □ Seismic = 7.5in, remaining effective seat = 8-10 in
- 30 columns were pushed beyond Δy
- Outrigger bent has torsional/shear D/C issues
- Three concepts were developed

Seismic Analysis to Finalize Strategy

- Criteria is Life Safety
- Columns already experienced displacement
- NDOT standard is FHWA manual
 - Method B, <u>C</u>, D
- Caltrans standard (FHWA D) makes sense
 - "Linear" RSA displacement demands (ATC6)
 - NL pushover disp. capacities & force demands
- Add shortening deformations to 100/30 seismic demand, $\Delta c > \Delta d$

Linear RSA System

Nonlinear System Pushover

Hinge Rehab Options

- Existing bearings failed
- Insufficient seat width
- Options investigated
 - Internal Strong Back (similar to CT seat extender)
 - External Strong Back
 - Complete Reconstruction
- Appearance, MOT, invasiveness, reliability

Project Constraints

Internal Strong Back

ADVANTAGES Minor Traffic Impact
No Future Maintenance
No Impact on Bridge Aesthetics
Bearing Pads Accessible for Inspection

DISADVANTAGES
*Complex Structural Modification

Hinge Replacement

ADVANTAGES

DISADVANTAGES *Complex Structural Modification *Significant Impact to Traffic *High Cost *Bearing Pads Inaccessible

External Strong Back

ADVANTAGES Ease of Construction
Low Cost
Minor Traffic Impact
Bearing Pads Accessible for Inspection

DISADVANTAGES *Aesthetics *Future Maintenance

Rehabilitation/Retrofit Design

- Rehabilitation Overview
- Construction Sequence
- Rehabilitation Design Challenges
- Check of Existing Structure
- Seismic Assessment & Retrofit

Hinge Rehabilitation

- New bearing pads are active for permanent loads reactions
- New bearing pads designed to take full live load reactions

Hinge Rehabilitation Construction Sequence

Hinge Rehabilitation Construction Sequence

PT Bars Stressing Sequence

- PT bars are NOT stressed simultaneously at all new steel beam locations
- Effect of stressing sequence of PT Bars at different beam locations is investigated by nonlinear analysis (SAP2000)

PT Bars Stressing Sequence

- Nonlinear spring (compression-only) elements used to model existing bearing pads and new steel beams/bearing pads
- Initial load case is permanent loads (reactions on existing pads only)
- Model loaded in the same sequence specified for stressing of PT bars

PT Bars Stressing Sequence

Bending Moment Due to Jacking of PT Bars at the Exterior Steel Beams (Left Side)

- Hinge diaphragms checked for forces due to PT bars stressing
- Bending moment is less than cracking moment and flexural capacity

- New reactions on hinge diaphragm are about 50% higher than reactions in the existing condition
- Transverse analysis and check of hinge diaphragms and bolster
- Diaphragm is modelled as a beam supported on springs
- Possible failure modes of the bolster have been checked
- Special attention to design of PT Bars

- Additional eccentricity of load on the short side of the hinge results in higher moments and tensile stresses at top of the superstructure
- Additional moment = R*X (X is approximately 3 ft)
- Additional moments and shears due to weight of bolsters and steel beams

Check of the Existing Structure

- Concrete stresses under service loads are within the acceptable limits
- Flexural and shear capacities are adequate

ATKINS

Seismic Retrofit

- Elastic dynamic & pushover analyses
- Displacement demand exceeds capacity for one column
- Shear demand exceeds capacity for 4 columns
- Column retrofit & outrigger bent cap retrofit by fiberwrap composite system

Construction

0]0

Summary

Multiple Alternatives Available for Replacement of ISH (staging, aesthetics)
External Strong Back Proved Best Alternative for This Case
In-Depth Analysis Necessary for Force Transfer
Scheduled Completion end of 2011

Acknowledgements

- Nevada DOT (owner, project manager)
 Todd Stefonowicz, NDOT Bridge
 Atkins (formerly PBSJ) (prime consultant)
 - Jaime Chang and Las Vegas Team

