In Span Hinge Replacement and Seismic Retrofit of the Flamingo Viaduct

Nathan Johnson, Ph.D., PE
 Sami Megally, Ph.D., PE
 ATIZINIC

Presentation Outline

 Nevada Background Flamingo Viaduct ■ Project History Structural Assessment **Exercise Strategy** Design Challenges Construction

Nevada Seismicity??

USGS

UNR Seismology

Retrofit

State adopted seismic prioritization

- **Importance and vulnerability**
- Life Safety or better
- \Box 1971 San Fernando \rightarrow
	- 1986 Caltrans Phase 1 (completed in 2000)
- \Box 1989 Loma Prieta \rightarrow
	- Caltrans increased research
	- NDOT begins prioritization in early 1990's
- 1994 Northridge
	- Caltrans Phase 2, Caltrans toll, CA Local

In-Span Hinge Failures

1971 San Fernando

1994 Northridge

Flamingo Viaduct

- I **Las Vegas, NV, I-515 over Flamingo**
- I **Owner: Nevada DOT**
- **Constructed in 1982**
- I **10-span continuous PT box girder**
- I **Twin 72ft wide 1400ft structures with 2 ISH**

 Scope: Repair hinges, seismic retrofit/rehab I **\$3.5M Retrofit/Rehab (small cost difficult task)**

Observed Issues

$\hfill \square$ Excessive hinge movement (18" seat)

- Designed for 2in, measured 8-10 in
- Restrainers failed
- Hinge seats
- Columns hinged
- \blacksquare Cap beam T & V

In-Span Hinge

Bridge Rail Separation

Column Plastic Hinging

Outrigger T/V Cracking

Timeline

- □ 1985 inspection reports noted excessive ISH movement
- 1992 expansion joints reconstructed
- 2003 Initial rehabilitation study (PB)
- 2007 Second Rehabilitation study (PBSJ)
- 2010 Retrofit/Rehabilitation Type Selection and Final Design
- (9 year project)

1992 Expansion Joint Reconstruction

Quantitives

 \sim

 \rightarrow \rightarrow

2007 Study

- \Box Original design did not account for creep/shrinkage
- \Box Seismic = 7.5in, remaining effective seat = 8-10 in
- \Box 30 columns were pushed beyond ^Δ^y
- \Box Outrigger bent has torsional/shear D/C issues
- \Box Three concepts were developed

Seismic Analysis to Finalize Strategy

- □ Criteria is Life Safety
- Columns already experienced displacement
- NDOT standard is FHWA manual
	- Method B, C, D
- Caltrans standard (FHWA D) makes sense
	- "Linear" RSA displacement demands (ATC6)
	- NL pushover disp. capacities & force demands
- Add shortening deformations to 100/30 seismic demand, Δc > Δd

Linear RSA System

Nonlinear System Pushover

Hinge Rehab Options

- \Box Existing bearings failed Insufficient seat width
- 3 Options investigated
	- Internal Strong Back (similar to CT seat extender)
	- External Strong Back
	- **Complete Reconstruction**
- □ Appearance, MOT, invasiveness, reliability

Major Factors to Consider Environmental Safety Funding Politics Right-of-way Function

Project Constraints

Internal Strong Back

ADVANTAGESMinor Traffic Impact No Future MaintenanceNo Impact on Bridge Aesthetics Bearing Pads Accessible for Inspection

DISADVANTAGESComplex Structural Modification

Hinge Replacement

ADVANTAGES No Future MaintenanceNo Aesthetic Impact

DISADVANTAGESComplex Structural Modification Significant Impact to Traffic High Cost **EBearing Pads Inaccessible**

External Strong Back

ADVANTAGES Ease of ConstructionLow Cost Minor Traffic Impact Bearing Pads Accessible for Inspection

DISADVANTAGES **×Aesthetics** Future Maintenance

Rehabilitation/Retrofit Design

- Rehabilitation Overview
- •Construction Sequence
- •Rehabilitation Design Challenges
- •Check of Existing Structure
- Seismic Assessment & Retrofit

Hinge Rehabilitation

ATKINS

- New bearing pads are active for permanent loads reactions
- New bearing pads designed to take full live load reactions

Hinge Rehabilitation Construction Sequence

Hinge Rehabilitation Construction Sequence

PT Bars Stressing Sequence

- PT bars are NOT stressed simultaneously at all new steel beam locations
- Effect of stressing sequence of PT Bars at different beam locations is investigated by nonlinear analysis (SAP2000)

PT Bars Stressing Sequence

- Nonlinear spring (compression-only) elements used to model existing bearing pads and new steel beams/bearing pads
- Initial load case is permanent loads (reactions on existing pads only)
- \bullet Model loaded in the same sequence specified for stressing of PT bars

ATKINS

AV DYA

PT Bars Stressing Sequence

Bending Moment Due to Jacking of PT Bars at the Exterior Steel Beams (Left Side)

- Hinge diaphragms checked for forces due to PT bars stressing
- •Bending moment is less than cracking moment and flexural capacity

- New reactions on hinge diaphragm are about 50% higher than reactions in the existing condition
- Transverse analysis and check of hinge diaphragms and bolster
- Diaphragm is modelled as a beam supported on springs
- Possible failure modes of the bolster have been checked
- Special attention to design of PT Bars

- Additional eccentricity of load on the short side of the hinge results in higher moments and tensile stresses at top of the superstructure
- \bullet Additional moment = R^*X (X is approximately 3 ft)
- Additional moments and shears due to weight of bolsters and steel beams

ATKINS

Check of the Existing Structure

- •Concrete stresses under service loads are within the acceptable limits
- \bullet Flexural and shear capacities are adequate

ATKINS

Seismic Retrofit

- Elastic dynamic & pushover analyses
- Displacement demand exceeds capacity for one column
- Shear demand exceeds capacity for 4 columns
- • Column retrofit & outrigger bent cap retrofit by fiberwrap composite system

Construction

ATKINS

l D. 10

Summary

Multiple Alternatives Available for Replacement of ISH (staging, aesthetics) External Strong Back Proved Best Alternative for This Case In-Depth Analysis Necessary for Force Transfer Scheduled Completion end of 2011

Acknowledgements

- Nevada DOT (owner, project manager) à Todd Stefonowicz, NDOT Bridge Atkins (formerly PBSJ) (prime consultant)
	- à Jaime Chang and Las Vegas Team

